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special quadrature rules, but they are also sometimes blessings in disguise, since they
can spoil a kernel’s smoothing and make problems well-conditioned.

In §§18.4–18.7 we face up to the issues of inverse problems.§18.4 is an
introduction to this large subject.

We should note here that wavelet transforms, already discussed in§13.10, are
applicable not only to data compression and signal processing, but can also be used
to transform some classes of integral equations into sparse linear problems that allow
fast solution. You may wish to review§13.10 as part of reading this chapter.

Some subjects, such asintegro-differential equations, we must simply declare
to be beyond our scope. For a review of methods for integro-differential equations,
see Brunner[4].

It should go without saying that this one short chapter can only barely touch on
a few of the most basic methods involved in this complicated subject.
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18.1 Fredholm Equations of the Second Kind

We desire a numerical solution forf(t) in the equation

f(t) = λ

∫ b

a

K(t, s)f(s) ds + g(t) (18.1.1)

The method we describe, a very basic one, is called theNystrom method. It requires
the choice of some approximatequadrature rule:

∫ b

a

y(s) ds =
N∑

j=1

wjy(sj) (18.1.2)

Here the set{wj} are the weights of the quadrature rule, while theN points{s j}
are the abscissas.

What quadrature rule should we use? It is certainly possible to solve integral
equations with low-order quadrature rules like the repeated trapezoidal or Simpson’s
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rules. We will see, however, that the solution method involvesO(N 3) operations,
and so the most efficient methods tend to use high-order quadrature rules to keep
N as small as possible. For smooth, nonsingular problems, nothing beats Gaussian
quadrature (e.g., Gauss-Legendre quadrature,§4.5). (For non-smooth or singular
kernels, see§18.3.)

Delves and Mohamed[1] investigated methods more complicated than the
Nystrom method. For straightforward Fredholm equations of the second kind, they
concluded “. . . the clear winner of this contest has been the Nystrom routine. . . with
theN -point Gauss-Legendre rule. This routine is extremely simple. . . . Such results
are enough to make a numerical analyst weep.”

If we apply the quadrature rule (18.1.2) to equation (18.1.1), we get

f(t) = λ

N∑
j=1

wjK(t, sj)f(sj) + g(t) (18.1.3)

Evaluate equation (18.1.3) at the quadrature points:

f(ti) = λ

N∑
j=1

wjK(ti, sj)f(sj) + g(ti) (18.1.4)

Let fi be the vectorf(ti), gi the vectorg(ti), Kij the matrixK(ti, sj), and define

K̃ij = Kijwj (18.1.5)

Then in matrix notation equation (18.1.4) becomes

(1 − λK̃) · f = g (18.1.6)

This is a set ofN linear algebraic equations inN unknowns that can be solved
by standard triangular decomposition techniques (§2.3) — that is where theO(N 3)
operations count comes in. The solution is usually well-conditioned, unlessλ is
very close to an eigenvalue.

Having obtained the solution at the quadrature points{t i}, how do you get the
solution at some other pointt? You donot simply use polynomial interpolation.
This destroys all the accuracy you have worked so hard to achieve. Nystrom’s key
observation was that you should use equation (18.1.3) as an interpolatory formula,
maintaining the accuracy of the solution.

We here give two subroutines for use with linear Fredholm equations of the
second kind. The routinefred2 sets up equation (18.1.6) and then solves it byLU
decomposition with calls to the routinesludcmp andlubksb. The Gauss-Legendre
quadrature is implemented by first getting the weights and abscissas with a call to
gauleg. Routinefred2 requires that you provide an external function that returns
g(t) and another that returnsλKij . It then returns the solutionf at the quadrature
points. It also returns the quadrature points and weights. These are used by the
second routinefredin to carry out the Nystrom interpolation of equation (18.1.3)
and return the value off at any point in the interval[a, b].
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SUBROUTINE fred2(n,a,b,t,f,w,g,ak)
INTEGER n,NMAX
REAL a,b,f(n),t(n),w(n),g,ak
EXTERNAL ak,g
PARAMETER (NMAX=200)

C USES ak,g,gauleg,lubksb,ludcmp
Solves a linear Fredholm equation of the second kind. On input, a and b are the limits of
integration, and n is the number of points to use in the Gaussian quadrature. g and ak
are user-supplied external functions that respectively return g(t) and λK(t, s). The routine
returns arrays t(1:n) and f(1:n) containing the abscissas ti of the Gaussian quadrature
and the solution f at these abscissas. Also returned is the array w(1:n) of Gaussian weights
for use with the Nystrom interpolation routine fredin.

INTEGER i,j,indx(NMAX)
REAL d,omk(NMAX,NMAX)
if(n.gt.NMAX) pause ’increase NMAX in fred2’
call gauleg(a,b,t,w,n) Replace gauleg with another routine if not using

Gauss-Legendre quadrature.do 12 i=1,n
do 11 j=1,n Form 1 − λK̃.

if(i.eq.j)then
omk(i,j)=1.

else
omk(i,j)=0.

endif
omk(i,j)=omk(i,j)-ak(t(i),t(j))*w(j)

enddo 11

f(i)=g(t(i))
enddo 12

call ludcmp(omk,n,NMAX,indx,d) Solve linear equations.
call lubksb(omk,n,NMAX,indx,f)
return
END

FUNCTION fredin(x,n,a,b,t,f,w,g,ak)
INTEGER n
REAL fredin,a,b,x,f(n),t(n),w(n),g,ak
EXTERNAL ak,g

C USES ak,g
Given arrays t(1:n) and w(1:n) containing the abscissas and weights of the Gaussian
quadrature, and given the solution array f(1:n) from fred2, this function returns the
value of f at x using the Nystrom interpolation formula. On input, a and b are the limits
of integration, and n is the number of points used in the Gaussian quadrature. g and ak
are user-supplied external functions that respectively return g(t) and λK(t, s).

INTEGER i
REAL sum
sum=0.
do 11 i=1,n

sum=sum+ak(x,t(i))*w(i)*f(i)
enddo 11

fredin=g(x)+sum
return
END

One disadvantage of a method based on Gaussian quadrature is that there is no
simple way to obtain an estimate of the error in the result. The best practical method
is to increaseN by 50%, say, and treat the difference between the two estimates as a
conservative estimate of the error in the result obtained with the larger value ofN .



18.1 Fredholm Equations of the Second Kind 785

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are. 

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books

or C
D

R
O

M
s, visit w

ebsite
http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),or send em
ail to directcustserv@

cam
bridge.org (outside N

orth A
m

erica).

Turn now to solutions of the homogeneous equation. If we setλ = 1/σ and
g = 0, then equation (18.1.6) becomes a standard eigenvalue equation

K̃ · f = σf (18.1.7)

which we can solve with any convenient matrix eigenvalue routine (see Chapter
11). Note that if our original problem had a symmetric kernel, then the matrixK
is symmetric. However, since the weightswj are not equal for most quadrature
rules, the matrixK̃ (equation 18.1.5) is not symmetric. The matrix eigenvalue
problem is much easier for symmetric matrices, and so we should restore the
symmetry if possible. Provided the weights are positive (which they are for Gaussian
quadrature), we can define the diagonal matrixD = diag(w j) and its square root,
D1/2 = diag(√wj). Then equation (18.1.7) becomes

K · D · f = σf

Multiplying by D1/2, we get

(
D1/2 · K · D1/2

)
· h = σh (18.1.8)

whereh = D1/2 · f. Equation (18.1.8) is now in the form of a symmetric eigenvalue
problem.

Solution of equations (18.1.7) or (18.1.8) will in general giveN eigenvalues,
whereN is the number of quadrature points used. For square-integrable kernels,
these will provide good approximations to the lowestN eigenvalues of the integral
equation. Kernels offinite rank (also calleddegenerate or separable kernels) have
only a finite number of nonzero eigenvalues (possibly none). You can diagnose
this situation by a cluster of eigenvaluesσ that are zero to machine precision. The
number of nonzero eigenvalues will stay constant as you increaseN to improve
their accuracy. Some care is required here: A nondegenerate kernel can have an
infinite number of eigenvalues that have an accumulation point atσ = 0. You
distinguish the two cases by the behavior of the solution as you increaseN . If you
suspect a degenerate kernel, you will usually be able to solve the problem by analytic
techniques described in all the textbooks.

CITED REFERENCES AND FURTHER READING:

Delves, L.M., and Mohamed, J.L. 1985, Computational Methods for Integral Equations (Cam-
bridge, U.K.: Cambridge University Press). [1]
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18.2 Volterra Equations

Let us now turn to Volterra equations, of which our prototype is the Volterra
equation of the second kind,

f(t) =
∫ t

a

K(t, s)f(s) ds + g(t) (18.2.1)

Most algorithms for Volterra equations march out fromt = a, building up the solution
as they go. In this sense they resemble not only forward substitution (as discussed
in §18.0), but also initial-value problems for ordinary differential equations. In fact,
many algorithms for ODEs have counterparts for Volterra equations.

The simplest way to proceed is to solve the equation on a mesh with uniform
spacing:

ti = a + ih, i = 0, 1, . . . , N, h ≡ b − a

N
(18.2.2)

To do so, we must choose a quadrature rule. For a uniform mesh, the simplest
scheme is the trapezoidal rule, equation (4.1.11):

∫ ti

a

K(ti, s)f(s) ds = h


 1

2Ki0f0 +
i−1∑
j=1

Kijfj + 1
2Kiifi


 (18.2.3)

Thus the trapezoidal method for equation (18.2.1) is:

f0 = g0

(1 − 1
2hKii)fi = h


 1

2Ki0f0 +
i−1∑
j=1

Kijfj


 + gi, i = 1, . . . , N

(18.2.4)

(For a Volterra equation of the first kind, the leading1 on the left would be absent,
andg would have opposite sign, with corresponding straightforward changes in the
rest of the discussion.)

Equation (18.2.4) is an explicit prescription that gives the solution inO(N 2)
operations. Unlike Fredholm equations, it is not necessary to solve a system of linear
equations. Volterra equations thus usually involve less work than the corresponding
Fredholm equations which, as we have seen, do involve the inversion of, sometimes
large, linear systems.

The efficiency of solving Volterra equations is somewhat counterbalanced by
the fact thatsystems of these equations occur more frequently in practice. If we
interpret equation (18.2.1) as avector equation for the vector ofm functionsf(t),
then the kernelK(t, s) is anm × m matrix. Equation (18.2.4) must now also be
understood as a vector equation. For eachi, we have to solve them × m set of
linear algebraic equations by Gaussian elimination.

The routinevoltra below implements this algorithm. You must supply an
external function that returns thekth function of the vectorg(t) at the pointt, and
another that returns the(k, l) element of the matrixK(t, s) at (t, s). The routine
voltra then returns the vectorf(t) at the regularly spaced pointst i.


